
Fall 2024

General Physics: Electromagnetism, Correction 14

Exercise 1 :

The switch in the circuit shown in the figure below is held in position [a] for 2 seconds. The
switch is then instantly moved to position [b] (without interrupting the electric current through
the coil). At time t = 2 s, the capacitor carries no charge.

Figure 1: RL circuit.

In position [b] of the switch:

1. Calculate the electric current through the coil at time t = 2s.

2. Calculate the frequency of oscillation.

3. Determine the charge Q(t) on the capacitor C as a function of time t.

4. Determine the current I(t) as a function of time t.

Numerical application : V = 0.2 V, R = 0.03 Ω, L = 54 mH, C = 3.2 µF.

Solution 1 :

1. When the switch is kept in position [a], the current circulates only in the loop formed by the
battery, resistance R, and the inductor L. Applying Kirchhoff’s second law to this loop, we
get the following differential equation:

RI + L
dI

dt
= V.
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To solve it, write

L
dI

dt
= V −RI.

If we integrate this equation we get∫
dI

V −RI
=

∫
dt

L
=⇒ − 1

R
log(V −RI) =

t

L
+ const,

which leads to [since I(0) = 0]

I =
V

R
(1− e−Rt/L).

For t = 2 s, we obtain I = 4.5A, which is the amplitude of the current.

2. After the switch is moved to position [b], oscillations appear in the circuit formed by the
inductor L and the capacitor C. The angular frequency of oscillation is ω0 = 1√

LC
. The

frequency is therefore:

f =
ω0

2π
=

1

2π
√
LC

= 382.9Hz.

3. Applying Kirchhoff’s second law to the loop formed by the inductor and the capacitor, we
get the following differential equation:

Q(t)

C
+ L

dI(t)

dt
= 0,

which leads to the following differential equation for Q(t):

Q(t)

C
+ L

d2Q(t)

dt2
= 0.

The solution is:

Q(t) = Q0 sin

(
t√
LC

)
,

where we use the sine function instead of the cosine because Q(0) = 0. This allows us to
determine the frequency of oscillation ω0 = 2406 rad s−1 and f0 = 383Hz.

4. The current I(t) is related to dQ(t)/dt as follows:

I(t) =
dQ(t)

dt
= Q0

1√
LC

cos

(
t√
LC

)
= Q0ω0 cos (ω0t) .
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Exercise 2 :

A conducting bar moves at a constant velocity v along two straight rails that form an angle α,
in the presence of a uniform magnetic field B perpendicular to the triangle formed by the bar and
the rails. The resistance of the bar is negligible, while the rails have a cross-sectional area S and
are made of a material with resistivity ρ.

Figure 2: RL circuit.

1. Determine the amplitude of the current I induced in the bar when the distance between the
bar and the vertex is r.

2. Determine the magnetic force on the moving bar as a function of time.

Initial conditions: t = 0 s and r = 0 cm. Numerical application r = 12 cm, S = 1 mm2, B = 0.2
T, α = 50◦, ρ = 1.5 · 10−6 Ω ·m, v = 30 cm/s and t = 0.4 s.

Solution 2 :

We start by calculating some quantities that will be necessary later, namely the distance between
the bar and the vertex, r, and the length of the part of the bar enclosed in the rails, l:

r(t) = vt, l(r) = 2r · tan
(α
2

)
= 2vt · tan

(α
2

)
.

From this we can compute the distance d from the vertex and the conjunction between the rail
and the bar, by using Pitagora formula

d =
√
l2 + r2 = r ·

√
tan2

(α
2

)
+ 1 =

r

cos
(
α
2

) .
We can now compute the magnetic flux through the circuit when the magnetic field is perpen-

dicular to the plane of the figure and the induced voltage, by applying the Farady’s law:
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ΦB(t) = B · l(t) · r(t)
2

= Bv2t2 · tan
(α
2

)
,

Vind(t) = −∂ΦB(t)

∂t
= −2Bv2t · tan

(α
2

)
.

Notice that the induced voltage remains time dependent. We need also to compute the resistance
of the two rails, by using the usual definition of R

R(t) =
2ρ

S · cos
(
α
2

)vt.
1. At this point it becomes straightforward to compute the magnitude of the induced current

as a function of position r, which is simply given by

I(t) =
|Vind(t)|
R(t)

=
BvS

ρ
· tan

(α
2

)
· cos

(α
2

)
=

BvS

ρ
· sin

(α
2

)
= 17mA.

Notice that while Vind and R are both time dependent, the induced current is instead time
independent.

2. The magnetic force induced on the moving bar is instead given by

F (t) = −2B2v2tS

ρ
· sin

(α
2

)
· tan

(α
2

)
= 3.78× 10−4N

Exercise 3 :

A 30 pF air-gap capacitor has two circular plates of area A = 100 cm2. It is charged by a 70V
battery through a 2.0Ω resistor. In the instant the battery is connected, the electric field between
the plates is changing most rapidly. In this instant, calculate:

1. The current into the plates;

2. The rate of change of electric field between the plates;

3. Determine the magnetic field induced between the plates. Assume E⃗ is uniform between the
plates at any instant and is zero at all points beyond the edges of the plates.
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Figure 3: Frontal view of the circular plate of a parallel plate capacitor. E⃗ between plates points
out toward viewer, lines of B⃗ are circles.

Solution 3 :

In this exercise, we are interested in the behaviour of a charging capacitor. To describe its
behaviour, we apply Kirchoff’s law to write down the differential equation

V = RI(t) +
Q(t)

C
= R

dQ(t)

dt
+

Q(t)

C
. (1)

By integrating it we have∫
dQ

V −Q/C
=

∫
dt

R
=⇒ −C log(V −Q/C) =

t

R
+ const, (2)

which leads to [since Q(0) = 0]
Q(t) = V C(1− e−t/RC). (3)

1. We can find the current in the capacitor plates at time t = 0, from the definition of the
current, I = dQ

dt
. We can then express the current as:

I =
dQ

dt

∣∣∣
t=0

=
εC

RC
e−t/RC

∣∣∣
t=0

=
ε

R
=

70V

2Ω
= 35A (4)

2. To find the rate of change of the electric field, let’s start from the electric field for a capacitor,
defined as:

E =
σ

ϵ0
(5)

where σ = Q/A is the surface charge for a surface A. Now by taking the derivative if this
E-field one can find:

dE

dt
=

d

dt

σ

ϵ0
=

1

Aϵ0

dQ

dt

∣∣∣
t=0

=
I

Aϵ0
= 4Vm−1 s (6)

where we have used the results of question 1.
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3. We are now encountering a time varying electric field. From the generalized Ampère law
(Ampère-Maxwell law), we have that,∮

C

B⃗ · dℓ⃗ = µ0Ienc + µ0ϵ0
dΦE

dt
(7)

where ΦE =
∫
S
E⃗ · dσ⃗ is the electric flux. We see that a time varying Electric field must

produce a magnetic field. From this geometry, we can imagine that the resulting magnetic
field will have a circular shape perpendicular to the electric field. We can then take a circular
Ampère loop parallel to and between the capacitor plates. We will have two cases as function
of the radius of the loop, a case where it is smaller than the radius of the capacitor plates
and a case where it will be bigger. For both cases there will be no enclosed currents, Iend = 0,
hence: ∮

C

B⃗d⃗l = µ0ϵ0
dΦE

dt
(8)

We first start with the configuration where the radius of the loop, r, is smaller than the radius
of the capacitor plate, r0 (r < r0):∮

C

B⃗d⃗l = µ0ϵ0
dΦE

dt
(9)

B(2πr) = µ0ϵ0
d

dt

∫
S

E⃗.dS⃗ (10)

B(2πr) = µ0ϵ0
d

dt
E(πr2) (11)

B =
µ0ϵ0r

2

dE

dt
(12)

where ΦE =
∫
S
E⃗.dS⃗ = E(πr2).

We have then to analyize the case for r > r0.∮
C

B⃗d⃗l = µ0ϵ0
dΦE

dt
(13)

B(2πr) = µ0ϵ0
d

dt

∫
S

E⃗.dS⃗ (14)

B(2πr) = µ0ϵ0
d

dt
E(πr20) (15)

B =
µ0ϵ0r

2
0

2r

dE

dt
(16)

In this case, the flux ΦE = E(πr20), since E⃗ = 0 outside the plates.

B has its maximum value at r = r0 which, from either relation above (using r0 =
√

A/π =
5.6 cm), is:

B =
µ0ϵ0r0

2

dE

dt
= 1.2× 10−4T. (17)
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This is a very small field and lasts only briefly (the time constant RC = 6× 10−11 s) and so
would be very difficult to measure.

Extra:
Let us write the magnetic field outside the capacitor plates in terms of the current that leaves
the plates. The electric field between the plates is E = σ/ϵ0 = Q/(ϵ0A), as we saw in question
2, dE

dt
= I/(ϵ0A). Hence B for r > r0 is,

B =
µ0ϵ0r

2
0

2r

dE

dt
=

µ0ϵ0r
2
0

2r

I

ϵ0πr20
=

µ0I

2πr
. (18)

This is the same formula for the field that surrounds a wire. Thus the B field outside the
capacitor is the same as that outside the wire. In other words, the magnetic field produced
by the changing electric field between the plates is the same as that produced by the current
in the wire.

Exercise 4 :

An induction stove contains a coil of copper wire underneath the ceramic plate, the "burner" (a
burner that never gets hot). When a cooking pot is placed on top of it, an alternating perpendicular
magnetic field is applied. The resulting oscillating magnetic field induce a magnetic flux changing
in time, producing Eddy currents in the pot. These currents will heat up the pot due to Joule
heating.
The heating power of an induction stove, designed for Switzerland, is 2 kW . What is the power of
this stove if it is used in the USA with the same metal pan?
Hint:

• – CH: Veff,CH = 240 V, ωCH = 50 Hz;

– USA: Veff,USA = 115 V, ωUSA = 60 Hz;

• It can be useful to define an effective voltage as follow, Veff = 1
T

∫ t+T

t
(V0 sin(ωt

′))2dt′ = V0√
2
.

Solution 4 :

The heating power of the pan comes from the induced current IAC,ind. This current is induced by
the time-varying magnetic field generated by a coil in the stove. The magnetic field is generated in
the coil because a voltage VAC,CH is applied to the coil and this voltage creates a current according
to:

IAC,CH =
VAC,CH

Rc

, (19)

where Rc is the coil resistance and the label "CH" stands for "Switzerland". So, the picture is the
following (in Switzerland):

VAC,CH(t) = V0,CH sin(ωCH(t)) (20)

is applied to the coil;

IAC,CH(t) =
V0,CH

Rc

sin(ωCH(t)) (21)
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flows through the coil;

BCH(t) = µ0n
V0,CH

Rc

sin(ωCH(t)) (22)

is generated by the coil. The flux of BCH through the surface of the pan changes and a current
Iind,CH is induced in the pan according to:

Iind,CH =
emf

Rpan

= − 1

Rpan

∂

∂t

∮
Span

B⃗ · d⃗S = − 1

Rpan

Apan
∂B⃗

∂t
= −Apan

Rpan

µ0n
V0,CH

Rc

ωCH cos(ωCHt). (23)

Apan, Rpan, µ0 and n are constant which do not depend on the state the stove is used, so we can
write:

Iind,CH = CV0,CHωCH cos(ωCHt). (24)

We know that in Switzerland the voltage provided in the domestic networks is 240 V, but this is
an effective value, i.e. the root-mean-square value:

Veff =

√
1

T

∫ t+T

t

(V0 sin(ωt′))2dt′ =
V0√
2
. (25)

This effective value is related to the peak value of the AC signal, but it is independent on the
country, so we can still write:

Iind,eff,CH = CVeff,CHωCH. (26)

The effective power is:
Peff,CH = RpanI

2
ind,eff,CH = C ′V 2

eff,CHω
2
CH, (27)

where C ′ is just a new constant. In the US, both Veff and ω are different:

• CH: Veff,CH = 240 V, ωCH = 50 Hz;

• USA: Veff,USA = 115 V, ωUSA = 60 Hz;

So, if we compare:
Peff,USA = RpanI

2
ind,eff,USA = C ′V 2

eff,USAω
2
USA, (28)

we get:
Peff,USA

Peff,CH

=
V 2
eff,USAω

2
USA

V 2
eff,CHω

2
CH

(29)

From which we conclude that:

Peff,USA = Peff,CH

V 2
eff,USAω

2
USA

V 2
eff,CHω

2
CH

= 0.33Peff,CH = 0.66 kW. (30)
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